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Abstract

Wavelet analysis allows processing of transient re-

sponse data commonly encountered in vibration health

monitoring tasks such as aircraft flutter testing. The

Laplace wavelet is formulated as an impulse response

of a single mode system to be similar to data fea-
tures commonly encountered in these health monitor-

ing tasks. A correlation filtering approach is intro-

duced using the Laplace wavelet to decompose a signal

into impulse responses of single mode subsystems. Ap-

plications using responses from flutter testing of aeroe-

lastic systems demonstrate modal parameters and sta-

bility estimates can be estimated by correlation filter-

ing free decay data with a set of Laplace wavelets.

1. Introduction

Experimental modal analysis techniques are often dif-

ficult to implement for on-line vibration health moni-

toring tasks due to prohibitive time and cost require-

ments along with inherent limitations in the formula-

tions. Rapid analysis of transient responses from mul-

tiple mode systems for which no accurate plant model
exists is especially problematic. Such analysis is re-

quired for safe and efficient health monitoring during

flight flutter testing of aircraft for which the modal pa-

rameters can arbitrarily change with flight condition,

loading, configuration and structural variations.

Modal filtering and parameter estimation techniques

have been studied in the context of flutter testing and

indicate improved signal analysis methods can increase

efficiency [7, 13]. Modal filtering is a promising ap-

proach because sensor arrays can be condensed and
information about stability can be directly obtained

but current filters are not robustly adaptive to varia-

tions from the aircraft dynamics [12]. Parameter esti-
mation methods can adapt to variations but are often

unreliable with low signal-to-noise ratios.

Wavelet analysis is a signal processing technique well

suited to flutter testing. This analysis operates on

small time windows of the signal using finite dura-

tion waveforms called wavelets [14]. This localized ap-

proach processes nonstationary data due to transient
responses or time-varying dynamics. Modal properties

are interpreted from dominant features in the signals.

There has been recent work in applying wavelets to

analysis of flight flutter test data [2]. In this other
work, measured data are represented in the time-

frequency plane which allows desired excitation and

response features to be easily extracted using a mask-

ing or denoising algorithm. Parameter estimation al-
gorithms can use the mask filtered data effectively and

identify linear models. A class of wavelets has been de-

veloped for analysis of dynamical systems which gen-

erates information similar to modal filtering [8]. Two
members of this class, denoted the Haley wavelet and

Laplace wavelet, are formulated to resemble responses

of single mode systems. A matching pursuit algorithm
decomposes a response into a sum of modal responses

correlating to the wavelets [9]. This algorithm is effec-

tive for analyzing flutter response data but the exces-

sive computational cost prohibits a reasonable on-line

implementation.

This paper introduces a correlation filtering approach

for modal analysis based on a modified version of

the Laplace wavelet. This procedure uses vector in-

ner products between a time history and a set of

Laplace wavelets as a measure of correlation between
the data and a range of modal dynamics described

by the wavelets. Local maxima in the correlations
are used to indicate which Laplace wavelet parameters

may be closest to modal parameters of the system be-

ing observed. This filtering is related to modal filtering

and parameter estimation methods because a signal

is interpreted as responses from subsystems with de-

termined modal properties. Correlation filtering aug-

ments existing tools for severn reasons. Correlation

filtering adapts to modeling errors and retains some

level of performance with realistic noisy flight data.

The proposed approach may enhance interpretation of

modally filtered sensor arrays in the presence of noise
and errors in the modal filter, and is acceptable from a

computational standpoint for on-line implementation.



ThispaperpresentstheLaplacewaveletcorrelational-
gorithmandappliesit to numericalandexperimental
datarelevantto flightfluttertestingof aircraft.

handlephasedifferencesbetweenthewaveletandthe
signal.A waveletcouldbederivedwith onlya real
part to matchphysicaldatawhichis typicallyreal.
However,usingbothpartsensuresa smoothnessand
continuityofthewavelettransform.

2. The Laplace Wavelet

The Laplace wavelet, ¢, is a complex, analytic, single-

sided damped exponential.

¢(., ¢, T,t) = ¢_(t) =

.,z--_ _(t-_) _t T_
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0 : else

The parameter vector 7 = {W,(,T} determines the
wavelet properties. These parameters are related to

modal dynamic properties and are denoted frequency

w E T_+, viscous damping ratio ( E [0, 1) C T_+, and

time index v E _. The coefficient A is an arbitrary

scaling factor, used here to scale each wavelet to unity

norm. The range T ensures the wavelet is compactly

supported and has nonzero finite length but the pa-

rameter T is generally not explicitly expressed.

It should be noted that the Laplace wavelet is gener-

ated by considering features anticipated in mechani-

cal system responses. Additional properties, such as

orthogonality, often associated with wavelets derived

from formal filter theory are not associated with the

Laplace wavelet [14]. The absence of these properties

limits the usefulness of the Laplace wavelet since some

operations, such as rapid signal reconstruction, are not

straightforward. This wavelet is introduced in a lim-

ited capacity for situations requiring rapid assessment
of modal dynamics from free response measurements.

3. A Laplace Wavelet Dictionary

This function is called a Laplace wavelet to emphasize

its derivation is related to the Laplace transform. In

particular, the Laplace wavelet has a strong similarity
to the inverse Laplace transform of the transfer func-

tion for an underdamped second order system. An

example Laplace wavelet is shown in Figure 1.
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Figure 1: Real and Imaginary Components of the
Laplace Wavelet for Parameters w = 3 Hz, _ = 0.08, v = 0
and Support Range T = 5 s

Figure 1 also shows the projections of ¢_ onto the real

and imaginary planes. These projections graphically

demonstrate the relationship between the wavelet and

an impulse response of a single mode system. The
Laplace wavelet has real and imaginary parts which

are 90 ° out of phase. In a manner similar to the Fourier

transform, a complex wavelet is required to properly

The analysis of response data from dynamical systems

often uses assumptions of linearity such that the sys-

tem response should be a linear combination of subsys-

tem responses [6]. These subsystems are second order

single degree of freedom systems in the case of modal
analysis. Signal decomposition of the response into

the subsystem responses for steady state data can be

accomplished via Fourier transforms which use a basis

of infinite length sinusoids of varying frequencies.

Transient response data is difficult to effectively de-

compose even for linear systems since the system re-

sponse is composed of subsystem responses with time-

varying magnitudes. The basis of infinitely long si-

nusoids used by the Fourier transform is not ideal for

this nonstationary data. Wavelets may be used for

signal decomposition of transient response data since
they inherently allow time-varying magnitudes of the

subsystem responses.

The concept of a dictionary is introduced to describe

a set of wavelets used for signal decomposition [14].

This dictionary is distinguished from a basis since the

response of any dynamical system may not necessar-

ily be expressed as a linear combination of the finite

number of entries in the dictionary. The dictionary

approximates a basis assuming the responses to be an-

alyzed are similar in nature to the Laplace wavelets.

The dictionary is basically a database of waveforms.

A finite set of wavelet parameters is used to generate

the dictionary. A discrete gridding of the parameter



spaceresultsinsetsf_,Z and T.

f_ = {_l,co2,-.-,cop} c _+
Z = {_l,_2,-..,_q} C T_+ N [0, 1)

7- = {rl,r2,...,rr} c

The dictionary, 9, is defined for the set of Laplace

wavelets whose parameters are contained in these sets

as denoted by 7 E F = fl x Z x T.

= {0(co,¢, 7-,¢) : co e a,¢ e z,7- e T}

4. Correlation Filtering

An inner product operation measures the correlation

between signals. Correlating a signal with a Laplace
wavelet measures similarity between frequency and

damping properties of the wavelet, ¢_, and the system
which generated the signal f(t). The inner product (or

dot product or scalar product) for finite length vectors

can be expressed mathematically several ways, e.g.

< ¢_(t), f(t) >= 11¢_11211/112cos(0) = y(t)*¢_(t)

A correlation coefficient, n'r E 7_, is defined to quan-

tify the degree of correlation between the wavelet and

a time signal. This correlation coefficient considers the

angle 0 between the vectors with the maximum corre-

lation occurring for vectors whose angle is 0 = 0.

_ = v_l < ¢_,f(t) >[

11¢_11_11f112

_-r is a matrix whose dimensions are determined by
the parameter vectors of {w, _, r}. A useful correlation

coefficient _(7-) is defined for on-line modal analysis to

correlate frequency and damping at each time value.

Peaks of the surface plot n7 for a given 7- relate the

wavelets with the strongest correlation to the data.

Define _;(7-) as the peak values of n-i at each 7- and
define _ and _ as the parameters of the Laplace wavelet

associated with the peak correlation.

_(7-) = max _'r
co E S_ = _{_'_'_}

A normalizing factor of v_ allows _(r) = 1 when the

signal in some time interval T is a linear combination

of the real and imaginary components of a particu-

lar wavelet. The formulation of s(7-) searches for a

maximum value across values of co and _. This search
can use subsets of f} and Z to find local maxima and

compute a _ vector at each time index. The subset

searching is analogous to finding multiple peaks of in-
terest on a frequency spectrum plot, with the added

variables of damping and time.

The support range T is not explicitly used to define _;
but it can greatly affect the computed value. Small T

may increase _ for signals not strongly correlated while

large T may decrease _ to the noise floor even for sig-

nals which are strongly correlated. Thus, T can not be

chosen arbitrarily. Knowledge of crest factors, signal-

to-noise ratios, and effective decay rates observed in

the data can all be used in guiding the choice of T.

A correlation filter approach computes the _; vector for

a response signal. The dampings _ and frequencies

associated with peak _ values indicate the modal prop-

erties of the system which generated the data. This
filter acts as a transform from the time domain to a

modal parameter, or stability, domain. This stability

estimate should be representative of the modal prop-

erties of the system if the data represent a linear time
invariant system in free decay.

5. Application : Test Signal

An application of correlation filtering using Laplace

wavelets on a test signal with known properties is in-
structive to demonstrate the method. Consider the

test signal f(t).

-_oCt-_o)
f(t) = e _/_-d sin (coo(t - to)) + .01n(t)

with f(t) = .01n(t) for t < to

f(t) is a real exponentially damped sinusoidal signal

corresponding to an impulse response of a single mode

system. The dynamical properties of that system, _o

and coo, are given in Table 1 along with the time index
at which the impulse is applied. The signal n(t) is a

unity bounded random noise weighted by 0.01. The

signal sampling rate is 200 Hz.

(o .04

Wo 10 Hz

to 0 s

Table 1: Properties of Test Signal

A dictionary ¢2 of Laplace wavelets is used for analyz-

ing this test signal. The grid of wavelet parameters

is nonuniform to provide higher resolution at lower
damping values. Using MATLAB TM syntax, define the

sets of parameters such that F = f} x Z x T.

ft = {5:0.5:20}
Z = {{0.005:0.005:0.2} {0.3:0.1: 0.9}}

T = {-5:0.1:5}

At each value of 7- E 7" a matrix of correlation coef-

ficients n-_ is computed. The dimension of this ma-
trix is determined by the sizes dim(f}) = 31 and



dim(Z) = 47. Also, the support of the wavelet is

T = 4 s indicating the vectors used for each inner

product calculation of _ have 800 elements since the

sampling rate is 200 Hz. Thus, 1457 inner products

with vector lengths of 800 must be computed to de-

termine _(v) for each of the 151 starting time values
v 6 T. The computational cost of correlation filtering

is clearly greater than the cost of Fast Fourier trans-

forms. This computational burden is offset by the

information gained from time-localized analysis away

from the 3w axis at multiple values of _.

Figure 2 presents the information obtained by corre-

lation filtering of the test signal f(t) with the Laplace

wavelet dictionary 9.
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Figure 2: Correlation Filtering of the Test Signal with
the Laplace Wavelet Dictionary g2 : Test Signal /(t) (a),
Peak Correlation Coefficient _(r) (b), Wavelet Frequency
Associated with Peak _ (c), _,Vavelet Damping _ Associated
with Peak _ (d)

Figure 2a presents the test signal f(t) while subplot
Figure 2b presents the correlation coefficient _(r) for

each value of T 6 T. A threshold n(_-) > 0.3 is applied

such that information is presented only from values of

v at which a significant correlation level is obtained.

The values of n(T) are near unity starting at the on-

set of the impulse and lasting for approximately 0.8 s.

These high correlation levels indicate some wavelet

%b 6 g2 in the dictionary has parameters that closely
match the dynamics which dominate the response dur-

ing these times.

Figures 2c and 2d present modal information obtained

from the correlation filtering. This information re-

lates to the frequency and damping parameters of the

Laplace wavelet which had the largest correlation at

time T. The frequency _ = 10 Hz is constant through-

out the time range at which the correlation coefficient

is greater than the minimum threshold. This wavelet

frequency is the dictionary entry nearest to (same as)

the frequency Wo of the test signal given in Table 1.

The damping _ is time-varying with initial dampings

low and increasing until the correct value of _ = 0.04

is obtained after 7- >_ to. This behavior is indicative

of the inner product function in the correlation filter-

ing which begins to be noticeable when the wavelet

support overlaps the nonzero component of the signal.

Low damped wavelets are nonzero for longer durations

and thus overlap the signal sooner. This explains the
artificially low values prior to t = 0s. Highly damped

wavelets decay rapidly which means their effective sup-

port is smaller. Adding noise to the signal reduces

for the correct damping value and increase n for

wavelets with smaller effective support. This explains

artificially high damping estimates for low signal-to-

noise ratios. When the support, or analysis window,

is observing the system at t >_ to in free decay with-

out excessive noise, the estimated damping value is
correct.

n(T) is obtained by determining local maxima of the

matrix n'r which considers the correlation coefficients
for all _ E _ and _ E Z. A surface plot showing the
value of the correlation coefficients in this matrix at

the onset of the impulse, r = to, is shown in Figure 3.
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Figure 3: Surface Map of Correlation Coefficient n7 Ob-
tained from Correlation Filtering of the Test Signal with a
Subset of the Laplace Wavelet Dictionary • at 7- = to = 0 s

The peak in Figure 3 at frequency _ = 10 Hz and

damping _ -- 0.04, also shown in Figure 2c and 2d,

matches the signal properties given in Table 1. This

plot demonstrates an effect of using the wavelet dictio-

nary since the peak would be a narrow spike if the dic-

tionary were comprised of orthogonal basis elements.

The surface gradient near the peak in Figure 3 pro-

vides insight into analysis of the wavelet parameters

in Figures 2c and 2d. That analysis notes the fre-
quency associated with the peak correlation remains

constant while the damping is time-varying. The gra-

dient of the surface at a;o, _o in Figure 3 in the fre-



quencydirectionis steepbut is relativelyshallowas
dampingischanged.Thissurfaceandtheanalysisof
Figure2suggestthatcorrelationfilteringissimilarto
othertechniquesin regardto beingmoreaccuratein
frequencythanin damping.

Thesefeaturesof a(r) presentedin Figure2 and
Figure 3 demonstratethe informationthat may
beobtainedfromcorrelationfilteringusingLaplace
wavelets.Monitoringthevalueof a indicatestheoc-
currenceofimpulsiveevents.Thetimeperiodatwhich
thedecayingresponseto thatimpulseissignificantcan
beobtainedbymonitoringthelengthoftimeforwhich

retainsahighvaluenear1.Also,thewaveletparam-
etersassociatedwith thepeaksof n(T)indicatethe
dynamicpropertiesof the subsystem(s)dominating
theresponse.Thus,correlationfilteringusingLaplace
wavelets,despitethelackofanorthonormalbasisora
parameterestimationalgorithm,canbeseenasatype
ofmodalfiltering.

Thesamplingratefor this datais 500Hz. Starting
time indices r are data dependent and correspond to

local maxima in the time domain signal y(t). This

selection is not optimum in all cases but corresponds

to an emphasis on transient excursions. The resulting

correlation map is presented in Figure 5.
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6. Application : Flight Test Data

Application to actual aircraft data is required to eval-

uate Laplace wavelet correlation filtering for use in a

flight test environment. Consider the DAST aircraft

(Drones for Aerodynamic and Structural Testing), a

remotely piloted research drone which encountered ex-

plosive flutter in June 1980 [5].

Figure 5: Correlation Filtering of the DAST Data with
the Laplace Wavelet Dictionary: Left Wingtip Accelera-
tion (a), Peak Correlation Values n(r) > 0.3 (b), Wavelet
Frequencies Associated with Peak Correlations (c), Corre-

sponding Wavelet Damping Values (d)

Figure 5a presents the acceleration response of the left

wingtip while Figures 5b, 5c, and 5d present the peak
correlation, frequency, and damping values as a func-

tion of time. A threshold a(_-) > 0.3 is applied to

avoid clutter on the plot without discarding interest-

ing information. Symbol size is proportional to inner

product magnitude I< ¢._, y(t) >1 to provide informa-
tion on the plot related to the time history magnitude.

Figure 4: NASA DAST vehicle in flight

Consider the last forty seconds of wingtip acceleration

response prior to the onset of flutter. The aircraft was

flying at 15,000 ]t and Mach number varied between

approximately 0.80 and 0.825. Pulse responses were

being induced during this time frame via symmetric
aileron pulses. A closed-loop flutter suppression con-

trol system was engaged. Due to an implementation
error, the controller could not maintain a stable sys-

tem, and the flutter instability was encountered. The

response data was correlated with a Laplace dictionary

of support T = 2s and with the following parameters:

12 : {10:0.25 : 30}

Z = {0 : 0.003: 0.063}

From the frequency values a trend is visible. Begin-

ning at t = -36s, each symmetric aileron pulse re-

sponse correlates first at a high frequency (approxi-

mately 20 Hz) and transitions to a lower frequency, as
low as 15 Hz. The frequency spread decreases as the

flutter condition is approached. The lower frequency

changes while the upper one is mostly constant, result-
ing in a flutter frequency at t = 0s of approximately

19.7 Hz. This corresponds with predicted and observed

characteristics as reported in the literature [10].

Describing the frequency trend is open to interpreta-

tion. The correlation values n decrease away from the

pulse onset, indicating lower confidence in those lower

frequency estimates. However, the fact that this lower

frequency limit trends into the flutter frequency sug-

gests that it can not be ignored. Note that 2 other

modes, antisymmetric wing bending and vertical fuse-

lage bending, are active near 16 Hz. The antisymmet-

tic bending mode is also predicted to have a transonic



flutter mechanismbut thesymmetricmodehadthe
lowerflutterspeed[1,5]. To complicatetheanalysis
further,notethatthesymmetricbendingmodewould
shift toward16Hz if the flutter suppression system

were disengaged.

The amplitude-dependent frequency estimates for each

pulse is characteristic of a hardening spring. Nonlin-

earities could have aerodynamic, structural, or control

system origins. However, a hardening spring transi-

tions to a linear system at small amplitudes, which

should be accompanied by an increase in correlation

for small amplitudes. This is not clearly observed

here, although there is some indication that frequency

locks onto a constant at small amplitudes. What can

be said for certain is that the pulses do not look like

responses of a system. What is still open to scrutiny
is whether the estimated frequencies represent actual

physical phenomena or show limitations of the ap-

proach when applied to multimode systems in the pres-
ence of noise.
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Figure 6: Correlation Filtering of the DAST Data with
the Laplace Wavelet Dictionary: Left Wingtip Accelera-
tion (a), Peak Correlation Values E(r) > 0.8 (b), Wavelet
Frequencies Associated with Peak Correlations (c), Corre-
sponding Wavelet Damping Values (d)

The damping correlations in Figure 5d also show in-

teresting characteristics. For the 4 pulse responses be-

tween t = -37s and t = -20s, the decreasing fre-
quencies are matched with decreasing damping val-

ues. Three of these 4 responses are further followed

by a sharp increase in damping, forming a "V" pat-

tern. Ignoring the frequency analysis for the moment,

this could indicate a nonviscous or more complicated

damping mechanism or it could merely be the effect
of the decreasing signal-to-noise ratio. The increas-

ing damping values due to noise was demonstrated in

Figure 2. In any case, the pulse response data do not

represent clearly linear time invariant modal dynam-
ics.

The correlation coefficients _ presented in Figure 5b
offer a quantitative measure of confidence in each fre-

quency and damping estimate. These n values are

higher near 20 Hz at the beginning of the pulse and

trend downward rather quickly. Reduced confidence

for frequency and damping estimates is justified where

the correlation coefficient is relatively low. In partic-

ular, the pulses with the aforementioned "V" pattern
are revealed to be similar to the other pulses when the

estimates are filtered further using a higher threshold

value of n. This filtered result is shown in Figure 6 for

n >_ 0.8.

Classical flutter testing trend analysis requires group-

ing correlations for a given pulse into an average value.

The results from performing this operation by inspec-

tion of Figure 6 for both frequency and damping is

presented in Table 2.

As can be seen in both Figure 6 and Table 2, the av-

erage frequency and damping values show a roughly

steady trend until the impulse at t = -13s at which

time the dominant frequency edges up slightly by

0.5 Hz and the damping trend accelerates toward zero.

From t = -9s and later a progressive increase in resid-
ual dynamics observed in Figure 6a indicates the ar-

rival of the stability boundary. The correlations do

identify this, but the choice of starting indices were se-

lected to emphasize transient peaks. As the frequency

spread converges to a single frequency, the damping

values converge to zero. These estimates agree with

previous parameter estimation results [1].

t, s _ -_, Hz
-36 0.035 18.25

-32 0.030 18.75

-27 0.027 19.0
-22 0.026 19.0

-17 0.025 19.2

-13 0.022 19.0

-9 0.02_/0.009 19.5/18.5
-5 0.018/0.0 19.5/18.5
-2 0.005 19.7

-1 0.000 19.7

Table 2: Frequency and Damping Values of DAST vehicle
From Inspecting Laplace Wavelet Correlation Analysis of
Flight Data

This analysis demonstrates that frequency and damp-

ing estimates provided by Laplace wavelet analysis are

a diagnostic tool useful for free decay analysis because

it provides time varying estimates at arbitrary resolu-

tions, which are not available from Fourier or tradi-
tional linear estimation techniques. This information



isparticularlyusefulin casessuchastheDASTwhere
pulseresponsesof closedloopsystemsareobserved
specificallywith theintentof trackingmodaldynam-
icsin thetimedomain.Whileit maynotbepossible
toidentifythesourceofnonstationaryornonlinearbe-
havior,non-constant_ and_ impliesthat a signalis
notbehavinglikealineartimeinvariantsecond-order
viscouslydampedsystem.Thisknowledgedirectlyim-
pactsconfidenceonecanplaceondampingtrendsob-
tainedfromtraditionalapproaches.
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Figure 7: Correlation Filtering of DAST Sweep Data
with the Laplace Wavelet Dictionary: Left Wingtip Accel-
eration (a), Peak Correlation Values K(r) (b), Wavelet Fre-
quencies Associated with Peak Correlations (c), Wavelet

Damping Associated with Peak Correlations (d)

this particular run, the first sweep is dominated by a

12 Hz mode, while the second sweep excites a 15 Hz
mode. The 15 Hz mode is also excited by a pulse ap-

plied between the sweeps at -535s. These frequencies
correspond to the primary symmetric and antisymmet-

ric wing bending modes, respectively. Other modes are
indicated but are not discussed here.

Interpreting the damping plot is difficult. The algo-

rithm tracks the forcing frequency, and the damping

generally correlates with small but nonzero values. Lo-

cal maxima occur in the damping trend as the response

passes through a resonance, but there is no obvious

way to separate reasonable damping values from un-

reasonable ones. In addition, there is no reason to sug-

gest that any of these damping values for a forced re-

sponse would be representative of actual system prop-
erties.

The analyses of flight data presented here demonstrate

the value of Laplace wavelet correlation studies for

gaining insight into the dynamics of free decay signals

relevant to hazardous flight flutter testing and stabil-

ity monitoring. This analysis results in estimates of

frequency and damping versus time, with a measure
of relative confidence in those estimates. For forced

response studies, the time-frequency information pro-

vided by the Laplace wavelet is more useful than the

time-damping information.

The knowledge added by Laplace wavelets when inter-

preting forced response data is less clear. Consider a

typical pair of sinusoidal sweeps, symmetric then anti-

symmetric, for the DAST aircraft at a stable flight con-
dition. The flight condition for this data is 0.7 Mach

number, 15000 fl and the flutter suppression system is

turned off. The left wingtip acceleration is presented

in Figure 7 with the Laplace wavelet analysis corre-

sponding to the following parameters.

fl = {10:.8:40}

Z = {{.003: .003: .063}{.045: .01: .1}}

7. Application : Nonlinear System

The Laplace wavelet is derived to correlate highly with

impulse responses from linear systems. However, cor-

relation filtering with the Laplace wavelet can also be
used to analyze responses from nonlinear systems by

interpreting frequency and damping parameters as lo-
cal frequency and decay rate. This filtering can also

be used to characterize the modal properties of the

linearized dynamics when the system response is rela-

tively close to an equilibrium condition such that the

nonlinearity is not strongly excited.

The support for this dictionary is T = 3 s and 500 time

domain local maxima were chosen as starting time in-

dices r. Figure 7a presents the acceleration response

being analyzed, while Figures 7c and 7d present the

resulting frequency and damping parameters of the

Laplace wavelets. A threshold of _(r) > .2 was used

and is presented in Figure 7b.

The frequency information presented in Figure 7c

clearly identifies the instantaneous frequency of the
excitation as a function of time. The correlation _ in-

creases near resonances visible in the time history. For Figure 8: Texas A&M University Aeroelastic Testbed



A nonlinearaeroelastictestbedhasbeendevelopedat
TexasASzMUniversityforflutterresearchusingapro-
totypicalwingsectionasshownin Figure8[11].Con-
sidertheaeroelasticequationsofmotionforthispitch-
plungesystem.

Systemstatey is the plunge position and a is the

pitch angle while matrices M, C and K are the struc-

tural mass, damping and stiffness matrices. The lift

EL and moment FM are linear functions of c_, d and

/) as determined by quasi-steady aerodynamic theory.

Nonlinearities are introduced to the system dynamics

through the spring function k_ which is a polynomial
function of the pitch angle. This type of nonlinearity

is equivalent to a nonlinear stiffness which can induce

limit cycle oscillation phenomena [3]. The spring func-

tion used in this paper models a hardening spring.

ka = 2.82 - 62.3a + 3709.7a 2 - 24196.0a 3 + 48757a 4

A nonlinear flutter mechanism resulting in a bounded

limit cycle oscillation occurs at U = 13.5 m/s with an
amplitude that increases as airspeed increases for the

system with this particular ks [4].

The equations of motion can be linearized around

small pitch angles a to compute a 2 mode model. The

mode shapes involve both state parameters although
one mode is associated mainly with plunge motion

while the other mode is associated mainly with pitch

motion. The parameters of these modes are given in

Table 3 for different airspeeds.

U=4 U=6 U=8 U=10 U=15.6

w u 2.45 2.44 2.41 2.37 2.20
w_ 1.58 1.62 1.67 1.78 2.07

_ .079 .081 .084 .089 .177
_ .054 .055 .055 .054 -.029

Table 3: Predicted Modal Properties of the Linearized

Texas A_zM University System At Airspeeds U in m/s

A classical flutter instability is encountered for the lin-

earized dynamics at U = 15.6 m/s from the two modes

coupling with the damping increasing for one mode

and decreasing for the other as the natural frequen-

cies coalesce. The limit cycle instability is caused by

the nonlinear stiffness so is not predicted with the lin-
earized dynamics.

Laplace wavelet correlation analysis of a simulation

of the nonlinear system validates the correlation ap-

proach for linearized dynamics. For this analysis, the

wavelet parameters are

12 = {.5:.1:5}

Z = {{0: .005: .03},{.04: .01: .1},{.2,.3}}

with the set of starting time indices r again determined

from time domain peak searching. The support of the
wavelets is 3 s. Two free decays of the pitch degree

of freedom at airspeeds U = 6, 8 m/s due to an initial

condition of .02 m for plunge and 0 ° for pitch angle

are shown in Figure 9.
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Figure 9: Correlation Filtering of the Nonlinear Simula-
tion Response with the Laplace Wavelet Dictionary kt, :
Pitch State Variable (a), Correlation Coefficient _ (b),
Wavelet Frequency _ Associated with Peaks of _ (c),
Wavelet Damping _ Associated with Peaks of _ (d)

Figure 9a presents the time history of the nonlinear

simulation. Figures 9b, 9c, and 9d present the re-
sulting correlation coefficient, frequency values, and

damping values respectively. For each decay, inspec-

tion of the correlation coefficient n clearly indicate re-

gions of linear and nonlinear behavior. Nonlinear be-
havior occurs at higher amplitudes in the first 2 s of

each decay and then transitions to behavior character-

istic of a linear time invariant system. This behavior is

indicated in Figures 9b through 9d. The nonlinear re-

gion is marked by lower correlation values, a decreasing

frequency trend characteristic of hardening springs,
and a certain amount of data scatter. This scatter

disappears as _ increases to unity, and the frequency
values _ and damping values _ converge on constants.

These constants are the wavelet parameters nearest

the corresponding linearized system characteristics for

w_ and _ given in Table 3. This analysis confirms the

Laplace wavelet correlation analysis properly identifies

linearized dynamics for nonlinear systems operating in

their linear range.

Experimental data from nonlinear systems can now be

analyzed in this fashion. Measurements of the wing
movement are recorded at different airspeeds to an-

alyze dynamical properties of the nonlinear system.



A seriesof measurementsaremadeby releasingthe
wingfromaninitial plungedisplacement(O.02m)and
recordinguntil themotionessentiallystops,with the
processrepeatedby increasingthe airspeedandre-
leasingthewingafterresettingthepositionto thede-
siredinitial conditions.Correlation filtering of these

responses for airspeeds U = 6, 8 m/s using a minimum
threshold a,.in = .2 results in the information shown

in Figure 10.
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Figure 10: Correlation Filtering of the Texas A&M Uni-
versity Nonlinear Testbed with the Laplace Wavelet Dic-
tionary ,Is : Pitch Measurement (a), Correlation Coefficient

(b), Wavelet Frequency _ Associated with Peaks of _ (c),
Wavelet Damping _ Associated with Peaks of _ (d)

A visual inspection of the pitch angle measurements

in Figure 10a can identify several features of the re-

sponse associated with the nonlinear hardening spring.
The initial local frequency decreases after 2 s when

the response decays to small angles. Also, the plunge
motion, which is not displayed in the Figure, decays

quickly during the initial 2 s so the response is domi-

nated by the mode associated with pitch motion.

The correlation coefficient g shown in Figure 10b indi-

cates the Laplace wavelets have good similarity to the
initial response but have a stronger similarity to the

decaying response at smaller amplitudes. This time-

varying correlation is intuitive since the wavelet is de-

rived to match the response from a linear system and

the wind tunnel system is strongly nonlinear initially

but nearly linear when the pitch angle decays to small
values. The additional set of correlation coefficients

below a _ .3 are believed to be related to the plunge

motion of the wing and corresponds to the second fre-

quency seen in Figure 10c.

The wavelet frequency _ quantifies the time-varying

local frequency which is expected for the response of a

hardening spring. The initial frequency is high but de-
creases steadily as the transient response decays until

(_ is small and the system behaves like a linear system.

The final value of _ when K _ 1 is approximately 20

percent higher than the predicted frequency from Ta-
ble 3. This identifies errors in the model relative to

the particular experimental configuration being inves-
tigated here.

The wavelet damping _ in Figure 10d varies with time.
The scatter is reduced when g and _ are constant but

never settles on a clear damping value which can be

easily extracted. This behavior may be reasonable for

highly nonlinear systems. However, the corresponding

high correlation values at lower amplitudes suggests

confidence in the damping estimates, so a nonviscous

damping mechanism such as coulomb damping may

be occurring. This idea is supported by inspection

of Figure 10a which indicates a linear rather than an

exponential amplitude envelope.

A series of these responses are measured at incremen-

tally increasing airspeeds including the unstable air-

speeds at which limit cycle oscillations occur. Fig-

ure 11 presents the response measurements and air-

speeds along with damping and frequency information

obtained from the correlation filtering.
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versity Nonlinear Testbed with the Laplace Wavelet Dic-
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Figure 11 emphasizes that the features observed in
Figure 10 extend across a wide range of velocities. The

frequency and damping demonstrate the same time-

varying behavior for each airspeed below the instabil-

ity at U = 13.5 m/s, characterized by decreasing
and increasing _ as the response decays. Also, ¢_ for

two frequencies have high correlation to the limit cycle

responses at velocities beyond U = 13.5 m/s.

The rate of time variation for _ is suggestive of the re-

lationship between system dynamics and the wavelet

support range. The response decays faster at higher



airspeedssothe systemquicklyapproximateslinear
dynamicsandquicklydecaysto belowthecorrelation
threshold.Thewaveletdictionarydoesnotcompen-
sateforthisincreaseddecayratesothesupportrange,
whichisgoodat lowairspeeds,becomeslesseffective
asairspeedincreases.Informationaboutthesystem
dampingisparticularlydifficultto obtainfromcorre-
lationfilteringof theresponseat the laststabletest
pointU = 12 m/s.

8. Conclusions

The Laplace wavelet is a useful waveform for analysis

of transient signals due to its formulation as an im-

pulse response of an underdamped second order sys-

tem. The inherent properties of this waveform can be

interpreted as traditional modal analysis concepts such

as damped natural frequency and viscous damping ra-
tio. A method of correlation filtering is introduced

based on a dictionary of Laplace wavelets that corre-

lates a measured response with wavelets of different

frequencies and dampings. Identifying the wavelets

which correlated highly with the signal indicates the

modal properties of the system which generated that

signal. Modal properties of aeroelastic systems are
identified using this correlation filtering approach.

Analysis of aircraft flight flutter test data resulted in

estimates of frequency and damping versus time, with
a measure of relative confidence in those estimates.

These estimates correctly indicated a trend toward an
instability which actually occurred. The linearized dy-

namics of a nonlinear wind tunnel system are also iden-

tified until a bifurcation induces a limit cycle oscilla-
tion.
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